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This paper is an extension of an earlier paper ( [1])  on the subject of the radiation of waves by a heaving circular 
cylinder in two-dimensions. In this paper the same ideas of boundary layer expansions are employed and extended to 
the general three-dimensional case. The ray method is used to extend the solution from a locally two-dimensional 
solution to the general far field solution. In the case that caustics occur, a uniform method is described to avoid solutions 
which become locally non-valid. 

1. Introduction 

The work presented in this paper is an extension of the two-dimensional treatment of a similar 
problem, see Hermans [1]. In that paper a perturbation method for the radiation of short 
surface waves is developed for a heaving circular cylinder. A two-dimensional theory is applied 
for the determination of the local solution. The method for the determination of the regular 
solution is easily translated into the three-dimensional problem, because the theory of the 
Green's functions is used in [1]. For the determination of the wave solution an approximation 
of the fluid velocity near the heaving object is needed. In [1] it is shown that for the determina- 
tion of this velocity we have to solve a double body problem. Generally it is possible to write 
down a solution of this problem with the help of a Green's function or to write down an integral 
equation for the potential function on the object. Both methods are equivalent. A lot of work 
must be done either to construct the Green's function or to solve the integral equation analytical- 
ly. In most cases it is not possible to do so. Therefore it seems preferable to use numerical 
methods to construct the correct fluid velocity near the object. There is a large amount of 
literature and programs available for this particular problem. This remark seems to be not 
obvious at this moment because a short wavelength is involved, however, the surface condition 
for the regular solution is a very simple one and the short wavelength is not a parameter for this 
problem. 

Once this fluid velocity is known, it is possible to find the wave contribution by means of an 
asymptotic perturbation technique. It turns out that we have to split up the local region (near 
the free surface) into an inner and an outer region. It becomes obvious that the appropriate 
methods to tackle the local problem are the methods described in the ray theory developed in 
geometrical optics (Keller [3] ). Some restrictions will be made to the geometry of the radiating 
object. The tangent plane to the object at the free surface is vertical; this is a rather serious 
restriction. Furthermore the intersection of the hull of the object with the free surface is 
supposed to be a smooth curve. The reader who is familiar with the ray method, will notice that 
the latter restriction is not a serious one. The first restriction can be removed as well, however, 
it is more convenient to treat that problem together with horizontal motions of the object. 
No restrictions are made with respect to convexity of the intersection curve. If the intersection 
curve is not convex, a caustic will be generated and the ray method leads to a singular solution 
near that caustic line. This problem can be overcome by means of a boundary layer solution 
near the caustic. However, in this paper the theory of Ludwig [4] is applied. This theory 
immediately leads to a uniform expansion which is valid near the caustic as well. 
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The validity of the solutions will not be questioned. For most solutions found by means of 
the ray method no proofs have been given. A comparison with known solutions gives an indi- 
cation that the method may be applied generally and leads to correct results. In [1] a com- 
parison is made with results obtained by Ursell [-6]. It turned out that the correct results are 
found. 

In the present paper the final calculations are carried out for a semi-submerged heaving 
sphere. In this case an explicit solution for the fluid velocity near the sphere is known and there- 
fore an explicit result for the wave solution can be constructed. From the correctness of these 
results it is expected that the correct results for the general case are obtained. 

For simplicity's sake infinite water depths are considered. This is a minor simplification. As 
finite depth makes the double body problem more complicated it is left out of consideration. 
The wave phenomenon is a local effect if the wavelength is short. Therefore the treatment of the 
wave part is not influenced by this simplification. 

2. Formulation of the problem 

In the introduction we already mentioned that we consider the depth of the water to be infinite. 
It will be clear from the following treatment that this is a minor simplification. The viscosity and 
compressibility are negligible and the wave amplitude is small, i.e. the heave amplitude which 
will be prescribed has to be small. Therefore linearized equations apply to this problem. 

The (x, y, z) coordinate system is chosen such that the positive y-axis is vertically upwards 
and the plane y = 0  coincides with the free surface in its undisturbed position, see fig. 1. The 
surface of the heaving object is given asf(x,  y, z)=0 and at y = 0  the normal to this surface lies 
in the plane y = 0, therefore, fy (x, 0, z)= 0. The principal radii of curvature of the surface of the 
object are finite and non-zero if y tends to zero. The latter condition turns out to be important 
for the stretching procedure. If this condition is not satisfied a different stretching has to be 
carried out. 

Figure 1 

The heaving motion will be prescribed as follows: any point of the object performs a vertical 
motion 

y=Re ~ e -ir~ + , 

where y* denotes the undisturbed y-coordinate of that point. Therefore all time-dependent 
quantities in the problem are assumed to depend harmonically on t with a period 2re/co. 

The irrotational motion of an ideal fluid can be expressed in terms of a velocity potential 
4~,) which for the three-dimensional time-periodic case has the representation 

q~<t)(x, y, z, t) = Re {~b (x, y, z)e -i~'t} . (2.1) 
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It is assumed that this potential exists and that the free surface condition may be linearized. We 
notice that this is a linearization with respect to the small amplitude. Then the potential (b 
satisfies" 

02(j~ 02 ~ 02~ 
c~x~ + ~ + Oz 2 - 0 in the fluid (sayf(x, y, z) > 0, y < 0) (2.2) 

&b 
- -  - k4~ = 0 o n  y = 0,  f ( x ,  0,  z )  > 0 (2 .3 )  
0y 

0~b 
- -  = U" V f  on f ( x ,  y ,  z)  = 0 (2 .4 )  
On 

where U = (0, U, 0), k = (o2/9 and 9 denotes the acceleration of gravity. At large distance from 
the object the radiation condition has to be taken into account. This condition will be specified 
later. It turns out to be more convenient to impose an "outgoing condition" locally, which is a 
generally accepted technique ha ray optics and it implies the usual radiation condition. 

We suppose that all length-parameters, which play a role in the solution of the problem are 
of the same order of magnitude (L). From now on we take the unit of length equal to L and 
suppose all quantities to be dimensionless. Short wavelengths (k >> 1) are considered. Looking 
at equations (2.2)-(2.4) it is immediately clear that the wave number k plays an important role 
in the free surface condition (2.3) and is of minor importance in (2.2) and (2.4). For k >> 1 the free 
surface condition reduces to ~b = 0 on y = 0. With this reduced free surface condition no wave 
contribution can be found. However, it leads to the correct fluid velocity near the object and 
away from the free surface. Therefore it yields the correct regular solution and the local solution 
(near y--- 0) has to be matched with this regular solution. Obviously the local solution represents 
the waves. 

First the regular solution will be found. It is assumed that ~(x, y, z; k) can be represented 
as a regular asymptotic power series with respect to k-  ~ as follows" 

N 
q)(x, y, z; k) = ~ k-iOi(x, y, z )+o(k-N) ,  as k --, oo . (2.5) 

i=0 

As mentioned in the introduction there are several ways to construct 0z. The use of the Green's 
function is explained here. After substitution of (2.5) into (2.2)-(2.4) and comparison of powers 
of k the following set of recurrence equations is obtained 

02 ~ + 02 ~i 02 ~ - 0 in the fluid (2.6) 
0x ~ T  ~ + 0z 2 

1~r i 01~ i - 1 - on y = 0  and f ( z ,O , z )>O (2.7) 
0y 

8~i o U'  V f  on = - 6~ f ( x ,  y ,  z) 0 (2 .8)  
On 

=~  1 i f i = 0  
where 6 ~ ~ 0 if i ~ 0.  

Because of the reduction of the free surface condition to (2.7), which is of a lower order than 
(2.3), no wave solution exists. Therefore no radiation condition exists for the function Oi. 
Hence an other condition is imposed at infinity. The appropriate condition is to require that 
Oi (R) tends to zero if R goes to infinity, where 

R = (x 2 + y2 + z2)~. (2.9) 

The above set of problems for ~q will be solved by the introduction of a Green's function for the 

Journal of  Engineerin9 Math., Vol. 7 (1973) 75-84 



78 A. J. Hermans 

region occupied by the fluid. The system is Self-adjoint. Thus we define the Green's function 
G (x, ~) as follows: 

Gx~+Gyy+Gz==O for x = ( x , y , z ) r  (2.10) 

1 
G(x, r - I x -  r + regular function (in the neighbourhood of x = ~) (2.11) 

G =  0 on y = 0 ,  say S* (2.12) 

0G 
- 0 on f (x)= 0,  say S o (2.13) 

On 

G--+0 as [ x [ ~  ~ .  (2.14) 

Application of Green's theorem to the fluid region leads to the following explicit expression 
for ffi (x). It follows that 

47z~i(x)= ( i lso+ fls,) (GO~i~n - ~iO-G~daon/. (2.15) 

and with the boundary conditions for G and ffi the following results are derived 

47Z~o(X)= (( GU.Vf&r (2.16) 
2J S O 

and 

_ t l 0 s* On ~ (x, ~, O, ~)d~df for i = 1, 2, ... (2.17) 

Although (2.16) and (2.17) represent an explicit expression for ~i(x) it is not an easy task to 
determine the appropriate Green's function in this general case. Once this Green's function has 
been found the regular solution is known. 

Some remarks will be made about the construction of the Green's function. An examination 
of condition (2.12) leads to the conclusion that the problem is antisymmetric in y. G(x, ~) can 
be written as follows 

1 1 
G(x, r - [x-~[ [x*-~[  + g(x, ~), where x* = (x, - y ,  z) (2.18) 

where 9 (x, r represents a regular function which is antisymmetric in y. To determine 9 (x, ~) a 
rather complicated integral equation has to be solved. This can be done numerically and is not 
considered in this paper. 

Because of the behaviour offy(x, y, z) near y = 0  it is easy to verify that fro in (2.16) is a regular 
function near y = 0  with ~o(X, 0, z )=0 and ~oy(X, 0, z)=V(x,z). This does not hold when 
horizontal motions of the object are prescribed. In that case the vertical velocity becomes 
singular near the object and the free surface. In the problem we are dealing with it turns out 
that singularities similar to the horizontal motion solution play a role in the higher order 
approximations of the heave problem. For the determination of the wave contribution the 
singularities play a role of minor importance in both cases. In the two-dimensional problem we 
came across similar behaviour [-1]. 

From now on we consider the vertical fluid velocity near the object and the free surface to be 
known and given by 

~'oy(x, O, z) = V(x, z) for f(x, O, z) ~ O, (2.19) 

to the lowest order of approximation. If the object is a semi-submerged sphere this velocity can 
be calculated exactly with the help of the known Green's function. We then get 

y, z) = - � 8 9  y (2~ 
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for the geometrical configuration 

f (x, y, z) = x 2 + y2 + z 2 - -  p 2  = R 2 _ p2 = O . 

Hence in the spherical case 

~oy(X, O, z) = V(x,  z) = - � 8 9  for x2 + z 2 = p~ . 

With the help of (2.19) the wave solution will be calculated in the next section. 

(2.21) 

3. The inner solution 

In this section a discussion of the local solution will be presented. Because of the reduction of 
the surface condition to a condition without a derivative in it, the wave contribution could not 
be found in the last section. In order to obtain this wave part we have to stretch the y-coordinate. 
When we introduce y' = ky both terms in the complete free surface become of the same order, 
however, because of condition (2.3) a local solution can be obtained of the form 

�9 (x, y, z) = ~((x, z)e ky (3.1) 

where Z (x, z) is a solution of the two-dimensional Helmholtz equation 

Z x x + Z z z + k 2 z  = 0 (3.2) 

satisfying the boundary condition at f ( x ,  y, z)= 0 and the radiation condition at infinity. The 
condition a t f ( x ,  y, z) cannot be met, because of the exponential behaviour with respect to y in 
(3.1) while (2.4) does not admit such behaviour. Therefore an inner solution of the local solution 
has to be considered which should be matched with an outer local solution of the form (3.1). 

For the construction of the inner solution we may stretch the coordinates in the neighbour- 
hood of S § and a point (Xo, 0, Zo) of S O as follows : 

x '  = k ( x - x o ( a ) ) ,  y '  = k y ,  z '  = k ( z - z o ( a ) )  , (3.3) 

where the relationf(xo (a), 0, zo (a))=0 holds, and where the intersection of the object with the 
free surface is given in parametric form by : 

x o (a) = (Xo (o-), 0, z o (a)). (3.4) 

A more suitable coordinate system can be found by introducing the distance z along the 
outward normal to (3.4) in the plane y=0 ,  and the arclength a along the intersection curve. 
Hence the coordinates are now (tr, y, z) and the arclength ds in this new system is equal to 

(ds) 2 = (da) 2 + ~ p - ~ - ~ ( ( d z )  2 + (dy) 2 (3.5) 

where p is the signed radius of curvature (because z >0  in the outward direction). The trans- 
formation formulae are (see figure2) 

d2xo (o - ) 
X = X 0 ((7) q- "cp d(r2 y = y ,  z = z o (a) + zp - -  

After substitution of (3.6) (a, y, z) are stretched 

y ' = k y ,  z ' = k z ,  a ' = a .  

The differential equation for ~b becomes 

02 ~ p2 02 ~b 02 

mt~ -~. ~ @ (P-~T) 2 ~T 2 -~- 0Y 2 p(p+z) Oa 

+ O(k)= 0,  

d2zo( ) 
do -2 

zp' &b pZ &b 

(3.6) 

(3.7) 

(3.8) 
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__ __ _ _ / 2  

"0"=O 

Figure 2 

with free surface condition : 

- - -  ~ = 0  at y ' = O .  ~y' 

The boundary condition at S O needs some further investigation. The equation of the surface S O 
becomes 

After some calculation it follows that this is approximately equivalent with: 

z'-~ (y,)2 where a --f~*/fyy* -- O(1). 
2ka ' 

Thus the boundary condition at S O becomes 

~ k { D~ y' Oq~ } 
an &' + ~ ay' + "'" 

Uy u y '  r  2 
--- U - V f _  at ~ ' ~  - -  

a ka 2ka 

(a -c' y'  ) 
f(x,y,z)--- f*(a ,z ,y)= f*  , ~ , ~  = 

=f* (a ,0 ,0 )  + k L *  + + f~* + f~* + ~ g , + O  = 0 

(3.9) 

This yields the condition 

(3.10) 

~3~ y' 0~ Uay' (y,)2 
&c--' + ka ?y~ ~- (ka) ~ at z' - 2ka 

Furthermore for the wave solution the outgoing condition has to be satisfied and the total 
solution has to match with the regular solution for y-+ - oo. To avoid this matching procedure 
another approach can be followed which leads to the lowest order approximation with less 
effort. The method is described by R. E. O'Malley Jr. [5] for a system of first order ordinary 
differential equations. The crucial step is to write the solution as a superposition of the regular 
solution and the local solution. This solution is valid in the fluid domain near the object. 

We write 

cb ..~ ~ k-i@i(x, y, z) + ~ ~(a,  ~', y') (3.11) 
i=O i = 0  
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where ~ =  o(~,_1) for k > l  and ~ is defined in section 2. Some calculations show that 
0~o/@' leads to a contribution to the boundary condition at S O while the contribution of 
OOo/&' is of lower order in k. Hence q~o has to be a solution of 

0 z ~b o 02 ~b o 
&,2 + ~y,~- = 0 ,  (3.12) 

0~o a(U-  V(a)) 
- (ka) 2 (3.13) 

07:' 

0r 
Oy' 

in the fluid, 

Y' W(~) , 7:' = (-kaa) ~- y , at = 0 ,  

- -  - ~ o  = 0 ,  on  y' = 0 ,  (3.14) 

~b 0 --,. 0 as y' ---, - c ~ ,  

Furthermore the outgoing condition (for the waves) has to be satisfied. In the special case of a 
semi-submerged sphere W(a) =~ Po U. 

The problem is reduced to the two-dimensional problem [1]. The wave part of the solution 
can be found easily. For the construction of 4~o an appropriate Green's function must be found. 
The Green's function g (z', y' ; 4, t/) is a solution of 

02g + gO 2 
~VV~ = 0 for (z', y') r ({, ~/) say z # r  &,~ 

0g 
0y' g = 0  at y ' = 0 ,  

@ 0 at z' 0 ,  0z' 

g{z, r = In [~--r + (regular function). 

The Green's function has to meet the outgoing condition as well. 
First the condition at 7:'= 0 will be disregarded. Later on this condition will be met by means 

of reflexion as follows 

g(v',Y'; 4,*/)= g~ ; 4, q ) + g ~  ; ~,r/) 
= gO(7:,,y, ; {, q)q_gO(7:,,y, ; _ { , q ) .  

The function gO (v, r is well known (John [2]) and may be written in the form 

gO(7:,, y,; {, r / ) = - 2 ~ i  exp {i[7:'-{I +(y '  +~/)} +�89 ln~ ~ i - ! ! ~  .+!y;_ ~/)2 } 
((7: _g )2+(y  q_~)2 q- 

[~o t cos(y' +o)t +Sin(y' +~l)te + t 2 dr. (3.15) - 2  

It can be shown that for large values of 7:' or 4, g o behaves like 

g~ y ' ;  ~, r/) ~ -2rc iexp{i[z ' -~l+(y '+t l )}+O(z ,~  ) . (3.16) 

We now apply Green's theorem as explained in section 2 

2W(cr) (o Y' 
~o(7:', Y') - ( ~ a ) ~ O _ ~  ~0~ 7:' , ;0, ~ ) & .  

We have to deal with the finite part of this integral, because the wave solution has a meaning 
only for large values of 7:'. 

The wave part (for large values of 7:') is of the form 

- 2 i W ( a )  ,~,+r,( ~ 2iW(~r) d~,+,, 
~ o -  ~ e . ] _ ~ o ~ e n d t / = ~  . (3.67) 
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This is the inner wave solution of the local solution. This solution provides the necessary 
matching condition for the outer solution. 

4. The outer solution 

In section 3 a suitable form has been introduced for the local solution (3.1) at finite distance 
from the S O and near the free surface. In this section we apply the ray method to obtain the wave 
solution in the far field. Hence, we introduce 

q~(x, y, z) ~ eik S(x,z)+ky ~ (ik)-"v,(x,z) . (4.1) 
n = O  

Clearly condition (2.3) is met by (4.1). Equation (2.2) produces after substitution of (4.1) the well 
known eiconal and transport equations for the unknown functions. 

The eiconal equation turns out to be 

(VS) 2 = S 2 + S~ 2 = 1 (4.2) 

and the transport equations are 

2VS" Vvm + v,, VS = - Arm- 1 for m = 0, 1, 2 . . . .  ; v_ 1 = 0 (4.3) 

The boundary condition for S(x, z) results from (2.4). It follows that S(xo(o-), zo(cr))=0 
where Xo(O')=(Xo(a), Zo(a))represents the intersection curve with the free surface. S(x, z) 
becomes uniquely determined if the outgoing condition is fulfilled. 

The characteristic curves (in this theory called rays) are orthogonal to the wave fronts 
S = constant. Hence, the rays are orthogonal to the curve Xo (a)= (Xo (a), zo (a)) because S-= 0 on 
this curve. Furthermore, since the right-hand side of the eiconal equation equals a constant, the 
rays are straight lines given in (3.6). 

The function S becomes 

S (x, z) = "c (4.4) 

This function S is a solution of the eiconal equation and matches exactly the phase function of 
the inner solution. The transport equation for Vo (x, z) is easily solved as well: 

A 

Vo (o-, r ) =  Vo (o-, 0) (4.5) 

The function vo (a, 0) which appears as an integration constant follows after matching the outer 

I ~'~ ! 

cr I 

J 

Figure 3 
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solution with the inner solution. The matching rule 

(Vo i.. r)o.,or --= (V0 ou,or)i . . . .  

leads to 
2i W(o-) 

V0(O-' 0) -- (ka)2 

The outer solution of the local solution equals 

e b ( x , y , z ) _  2i W ( a ) ( ) - ~ )  ~ ( k a )  2 e ~k~+k~ (4.6) 

This solution is uniformly valid provided that z = - p  lies inside the object. This is the case if 
Xo (a) = (x0 (a), Zo (cr)) is a convex curve. If several rays pass through a point, the final solution is 
a superposition of all ray contributions. At one side of a caustic always two "neighboring" rays 
pass through a point; if we are at the other side no such rays are found. This does not exclude 
the presence of any rays in that region. This can be seen in fig. 3. 

5. The uniform solution 

In this section we consider a non-convex curve as the intersection of S O and S +. There exists a 
range of o-, say al  < o-< az where p + r  becomes zero. This is possible because p is negative 
with our definition of the positive direction along the normal (fig. 3). 

Evidently (4.6) becomes infinite near the caustic C. Ludwig [4] suggests the application of 
another "Ansatz" than the one used in section 4. In the neighbourhood of a caustic the solution 
can be written as a combination of an Airy function and its derivative as follows 

i , 
�9 (x,y,z) = e ikO(x)+ky { A i ( - k S p ( x ) ) 9 ( x , k )  + k-~Ai ( - k S p ( x ) ) h ( x , k ) }  (5.1) 

where x = (x, z) and the amplitude functions 9 and h can be written as power series with respect 
to k-  i. We only take the lowest order approximation with index zero into account. Here Ai (w) 
is the Airy function satisfying the differential equation 

Ai" (w) - w Ai (w) = 0. (5.2) 

If (5.1) is substituted into (2.2) and (5.2) is employed, the result is 

eik O(x)+ ky 1-- k2 All ( -- k s p) O0 [ (V0)  2 "~- P ( V P )  2 - 1]  
t 
"+ k~-Ai ' ( -  k s p) ho [- (V0) 2 + p (Vp) z - 1] 

- ik~Ai' ( - k~ P) 90 [2V0" Vp] + k~Ai" ( -  k s p) h o [2V0- Vp] 

+ ik Ai ( - k s p) [2V0. Vg 0 + AOgo + 2p Vp. Vh o + pA ph o + (Vp) 2 ho ] 

- kSAi ' ( -  k s p) [2Vp. Vg 0 + Apg o + 2V0. Vh o + A0ho] 

+ A i ( _  k~-p)Ago+i Ai' ( - k ~ P )  } k+ Ah0 = 0- (5.3) 

Each term in square brackets is separately equated to zero. The first four terms lead to the 
equations 

(V0) 2 + p (Vp) 2 - 1 = 0 (5.4) 

2V0" Vp = 0.  (5.5) 

First we make a connection between (5.4)-(5.5) and the eiconal equation. Consider the region 
p > 0, i.e. the illuminated region as shown in figure 4. 

In this region the nonlinear system of partial differential equations (5.4}-(5.5) is hyperbolic. 
Multiplying (5.5) by + p~ and adding (5.4), we obtain 
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(V0 +_ p~ Vp) z = 1.  (5.6) 

In t roduc ing  

S +- = V O + p W p  (5.7) 

it follows that S -+ are the phase functions constructed in section 4, which are known. Hence, 
0 and p are known and given by 

0 = �89 + + S - ) ,  = } (S + - S - ) .  (5.81 

It can be shown that both 0 and p are regular functions. For p <  0 it can be shown that (5.1) 
becomes exponentially small for large k. For p > 0 the asymptotic values of the phase equals 
the values found by means  of the ray method.  

The next pair  of terms between square brackets  in equat ion (5.3) lead to the equat ions  

2V0" Vgo + AOgo + 2p Vp" Vho + p Ap h 0 + (Vp) 2 ho = 0 (5.9) 

2Vp" Vg0 + Ap go + 2V0. Vh 0 + A Oho = 0 .  (5.10) 

The equat ions (5.9) and (5.10) are connected with the t ranspor t  equation.  Mult iplying (5.10) 
by • p4 and adding (5.9) we obta in  

2 (V0 +_ pWp)" V (0o ++- p~ho) + (AO + p~Ap)'(go +_ p~ho) = O. 

In t roduc ing  G+- = g o  +-P-~ho, we obtain  the equat ion  

2 v s  -+. VG+- + [ a s  +- (vp) 2] o+- = o 

The singularity in the last par t  of  the term between square brackets  cancels the singularity 
of the first part.  

The  subst i tut ion v~ = p 4 G -  leads to the t r anspor t  equat ion  of section 4 

2VS -+ "Vv~+AS + vo ~ = 0 

The conclusion is that  if the mult iple  ray solution is found at finite distance from the caustic, the 
uni form asympto t ic  solution is calculated easily. 
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